Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 25(10): 1802-1814, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37053041

RESUMO

BACKGROUND: Brain edema is a common complication of brain metastases (BM) and associated treatment. The extent to which cytotoxic edema, the first step in the sequence that leads to ionic edema, vasogenic edema, and brain swelling, contributes to radiation-induced brain edema during BM remains unknown. This study aimed to determine whether radiation-associated treatment of BM induces cytotoxic edema and the consequences of blocking the edema in preclinical models of breast-cancer brain metastases (BCBM). METHODS: Using in vitro and in vivo models, we measured astrocytic swelling, trans-electric resistance (TEER), and aquaporin 4 (AQP4) expression following radiation. Genetic and pharmacological inhibition of AQP4 in astrocytes and cancer cells was used to assess the role of AQP4 in astrocytic swelling and brain water intake. An anti-epileptic drug that blocks AQP4 function (topiramate) was used to prevent cytotoxic edema in models of BM. RESULTS: Radiation-induced astrocytic swelling and transient upregulation of AQP4 occurred within the first 24 hours following radiation. Topiramate decreased radiation-induced astrocytic swelling and loss of TEER in astrocytes in vitro, and acute short-term treatment (but not continuous administration), prevented radiation-induced increase in brain water content without pro-tumorigenic effects in multiple preclinical models of BCBM. AQP4 was expressed in clinical BM and breast-cancer cell lines, but AQP4 targeting had limited direct pro-tumorigenic or radioprotective effects in cancer cells that could impact its clinical translation. CONCLUSIONS: Patients with BM could find additional benefits from acute and temporary preventive treatment of radiation-induced cytotoxic edema using anti-epileptic drugs able to block AQP4 function.


Assuntos
Edema Encefálico , Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Topiramato/farmacologia , Topiramato/metabolismo , Edema/complicações , Edema/metabolismo , Edema/patologia , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/complicações , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia
2.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824740

RESUMO

Background: Brain edema is a common complication of brain metastases (BM) and associated treatment. The extent to which cytotoxic edema, the first step in the sequence that leads to ionic edema, vasogenic edema and brain swelling, contributes to radiation-induced brain edema during BM remains unknown. This study aimed to determine whether radiation-associated treatment of BM induces cytotoxic edema and the consequences of blocking the edema in pre-clinical models of breast cancer brain metastases (BCBM). Methods: Using in vitro and in vivo models, we measured astrocytic swelling, trans-electric resistance (TEER) and aquaporin 4 (AQP4) expression following radiation. Genetic and pharmacological inhibition of AQP4 in astrocytes and cancer cells was used to assess the role of AQP4 in astrocytic swelling and brain water intake. An anti-epileptic drug that blocks AQP4 function (topiramate) was used to prevent cytotoxic edema in models of BM. Results: Radiation-induced astrocytic swelling and transient upregulation of AQP4 within the first 24 hours following radiation. Topiramate decreased radiation-induced astrocytic swelling, loss of TEER in astrocytes in vitro , and acute short term treatment (but not continuous administration), prevented radiation-induced increase in brain water content without pro-tumorigenic effects in multiple pre-clinical models of BCBM. AQP4 was expressed in clinical BM and breast cancer cell lines, but AQP4 targeting had limited direct pro-tumorigenic or radioprotective effects in cancer cells that could impact its clinical translation. Conclusions: Patients with BM could find additional benefits from acute and temporary preventive treatment of radiation-induced cytotoxic edema using anti-epileptic drugs able to block AQP4 function. Key points: Radiation induces cytotoxic edema via acute dysregulation of AQP4 in astrocytes in preclinical models of BM. Pharmacologic blockage of AQP4 function prevents water intake, astrocytic swelling and restores TEER in vitro. Pre-treatment with single-dose Topiramate prevents brain radiation-induced brain edema without direct tumor effects in pre-clinical models of BCBM. IMPORTANCE OF THE STUDY: In this study we describe a novel role for astrocytic swelling and cytotoxic edema in the progression of radiation-induced brain edema during BM treatment. While radiation-induced edema has been fully attributed to the disruption of the blood-brain barrier (BBB) and ensuing vasogenic effects, our results suggest that cytotoxic edema affecting astrocytes in the acute setting plays an important role in the progression of brain edema during BM standard of care. Current standard of care for brain edema involves pre-treatment with steroids and the use of bevacizumab only after clinically significant edema develops. Both interventions are presumed to target vasogenic edema. This study suggests that patients with BM could find additional benefits from acute and temporary preventive treatment of radiation-induced cytotoxic edema using an already FDA-approved anti-epileptic drug. Such early prevention strategy can be easily clinically implemented with the goal of minimizing treatment-related toxicities.

3.
Open Nurs J ; 9: 1-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25767632

RESUMO

The circadian system controls the daily rhythms of a variety of physiological processes. Most organisms show physiological, metabolic and behavioral rhythms that are coupled to environmental signals. In humans, the main synchronizer is the light/dark cycle, although non-photic cues such as food availability, noise, and work schedules are also involved. In a continuously operating hospital, the lack of rhythmicity in these elements can alter the patient's biological rhythms and resilience. This paper presents a Theory of Inpatient Circadian Care (TICC) grounded in circadian principles. We conducted a literature search on biological rhythms, chronobiology, nursing care, and middle-range theories in the databases PubMed, SciELO Public Health, and Google Scholar. The search was performed considering a period of 6 decades from 1950 to 2013. Information was analyzed to look for links between chronobiology concepts and characteristics of inpatient care. TICC aims to integrate multidisciplinary knowledge of biomedical sciences and apply it to clinical practice in a formal way. The conceptual points of this theory are supported by abundant literature related to disease and altered biological rhythms. Our theory will be able to enrich current and future professional practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...